Ocean Heat Transport, Sea Ice, and Multiple Climate States: Insights from Energy Balance Models
نویسندگان
چکیده
Several extensions of energy balance models (EBMs) are explored in which (i) sea ice acts to insulate the atmosphere from the ocean and (ii) ocean heat transport is allowed to have some meridional structure controlled by the wind, with minima at which the ice edge can rest. These new models support multiple stable ice edges not found in the classical EBM and a hysteresis loop capable of generating abrupt warming as the ice edge ‘‘jumps’’ from midto high latitudes. The new equilibria are demonstrated in two classes of model, in which the wind stress is either specified externally or generated interactively. Wind stress is computed by introducing a dynamical constraint into the EBM to represent the simultaneous meridional transport of energy and angular momentum in the atmosphere. This wind stress is used to drive ocean gyres, with associated structure in their meridional heat transport, so that the atmosphere and ocean are coupled together both thermally and mechanically.
منابع مشابه
Climate Determinism Revisited: Multiple Equilibria in a Complex Climate Model
Multiple equilibria in a coupled ocean–atmosphere–sea ice general circulation model (GCM) of an aquaplanet with many degrees of freedom are studied. Three different stable states are found for exactly the same set of parameters and external forcings: a cold state in which a polar sea ice cap extends into the midlatitudes; a warm state, which is ice free; and a completely sea ice–covered ‘‘snowb...
متن کاملStable “Waterbelt” climates controlled by tropical ocean heat transport: A nonlinear coupled climate mechanism of relevance to Snowball Earth
Ongoing controversy about Neoproterozoic Snowball Earth events motivates a theoretical study of stability and hysteresis properties of very cold climates. A coupled atmosphere-ocean-sea ice general circulation model (GCM) has four stable equilibria ranging from 0% to 100% ice cover, including a “Waterbelt” state with tropical sea ice. All four states are found at present-day insolation and gree...
متن کاملSea Ice Eeects on the Sensitivity of the Thermohaline Circulation
We investigate the sensitivity of the thermohaline circulation (THC) with respect to a subpolar salinity perturbation. Such perturbation simulates a fresh water release caused by retreating glaciers or anomalous sea ice. The feedback mechanisms amplifying or damping the initial anomaly are analyzed in the coupled ocean-atmospheresea ice model. Their understanding is essential for modelling clim...
متن کاملEffect of land albedo, CO2, orography, and oceanic heat transport on extreme climates
Using an atmospheric general circulation model of intermediate complexity coupled to a sea ice – slab ocean model, we perform a number of sensitivity experiments under present-day orbital conditions and geographical distribution to assess the possibility that land albedo, atmospheric CO2, orography and oceanic heat transport may cause an icecovered Earth. Changing only one boundary or initial c...
متن کاملCoupled climate modelling of ocean circulation changes during ice age inception
Freshening of high latitude surface waters can change the large-scale oceanic transport of heat and salt. Consequently, atmospheric and sea ice perturbations over the deep water production sites excite a large-scale response establishing an oceanic ‘‘teleconnection’’ with time scales of years to centuries. To study these feedbacks, a coupled atmosphere-ocean-sea ice model consisting of a two di...
متن کامل